Your browser is out-of-date Please upgrade.

Why do I need an up-to-date browser?

Cutting greenhouse gas emissions from LNG engines

09/04/2020 - By SGMF Admin Created 3 months ago
Cutting greenhouse gas emissions from LNG engines

 

  • LNG engine technology deployed at scale will help shipping cut greenhouse gas emissions and transition to carbon-neutral fuels. 
  • Modern low-pressure, dual-fuel engines emit lower greenhouse gases than diesel engines under the most widely accepted calculations. 
  • Dual-fuel engines under development have already demonstrated lower greenhouse gas emissions than diesel engines even over a shorter timeframe.

As shipping looks to reduce its greenhouse gas emissions, few fuels have been as energetically discussed as liquified natural gas (LNG). As uptake of LNG accelerates, the fuel’s impact on emissions is being even more widely debated.

The International Maritime Organization is aiming to at least halve greenhouse gas (GHG) emissions from shipping by 2050. LNG is an ideal transition fuel to begin that journey. Although it is a fossil fuel, the same supply, storage and combustion technologies can later be used with carbon-neutral bio- and synthetic gas as these become available. As LNG bunkering infrastructure is already widespread, Wärtsilä believes this pathway represents the simplest, fastest and most cost-efficient way for shipping to reach its 2050 vision.

Methane is the main component of LNG and a potent greenhouse gas, with a global warming potential many times that of carbon dioxide. Its escape during the production and use of LNG reduces the positive impact of the fuel on GHG emissions.

Methane slip from Wärtsilä dual-fuel engines has been slashed by 75% over the past 25 years and further advances will drastically reduce methane slip again over the next three years. Engine advances and emission abatement improvements in the fuel production and supply chain mean that all our gas engines will soon offer a decisive emissions advantage over diesel.

Methane emissions must be projected for shipping to select appropriate technologies for reducing GHG emissions. But accounting for methane emissions is not straightforward. For example, there is disagreement over whether methane’s impact should be projected over a 20-year or 100-year timescale. The shorter timescale shows a bigger impact as methane breaks down relatively quickly in the atmosphere. To date, most scientific studies have adopted a 100-year view, as does all relevant legislation.

Measuring methane

Two reports show how similar facts can give rise to different interpretations of the impact of methane emissions.  In April 2019, the consultancy thinkstep analysed the GHG emissions impact of LNG as a marine fuel across its lifecycle[i]. In January this year, the International Council for Clean Transport (ICCT) released a similar report[ii]. But while the authors of the thinkstep study argued that ship engines using LNG emit less GHG than those burning heavy fuel oil, the authors of the ICCT report used broadly similar numbers to argue that gas engines are worse emitters than those burning conventional diesel.

Wärtsilä believes that the ICCT report uses methane emission levels that do not reflect the latest gas engine technology. As only a small proportion of the global fleet uses gas engines today, forecasts on the emissions of the future gas-fuelled fleet should be based on the newer engine technology likely to be installed on vessels from today.

But the study uses an average methane slip for low-pressure, dual-fuel medium-speed gas engines (of 5.5g/kWh) that is higher than that of all but one engine in Wärtsilä’s portfolio. A more appropriate figure can be taken from the Wärtsilä 46DF, a modern engine that is in marine service and more closely reflects the current state of low-pressure, dual-fuel technology in four-stroke engines. Using this engine, methane slip measured under similar conditions as those in the two studies would be 2.8g/kWh.

Using the assumptions from the thinkstep report, this level of methane slip would lead to engine emissions that are 14% lower and total well-to-wake emissions that are marginally lower than marine gas oil over a 100-year timeframe. Modern dual-fuel four-stroke engines are already better for the environment over the most widely used timeframe. And further advances will cut emissions to the point where they exceed the performance of diesel engines even across the more challenging 20-year timeframe.

Future LNG engines

One continuing focus area is the design of engine combustion chambers. Typical combustion in a marine gas engine demands a high oxygen content and a low temperature to maximise efficiency while producing the lowest NOx emissions. Because methane burns more completely at hotter temperatures, some of the gas can pass unburned to the exhaust if it is, for example, close to any of the relatively cooler areas sometimes found in the combustion chamber. Slip can be reduced further by optimising the chamber to both minimise these cool areas and eliminating any crevices where unmixed methane can escape combustion.

Another important parameter is the timing of gas admission and valve overlap duration. The overlap is the time that inlet and exhaust valves are open at the same time. This is often used to allow partial cooling of engine components between the combustion cycles – to reduce NOx formation – but it also improves scavenging as the incoming charge air assists the removal of the remaining exhaust gas in the cylinder. So while this helps with cooling, it also exacerbates methane slip. Working on reducing overlap time, both through the engine control system and the valve train, will minimise decrease methane slip.

Other methane reduction techniques under investigation include adding a proportion of hydrogen to the combustion process. This improves the combustion and decreases methane slip. However, the higher combustion pressures and temperatures achieved lead to an increase in NOx formation that can push the limits of what is regulated for under IMO Tiers II and III.

These advances promise to slash methane slip and cut greenhouse gas emissions from low-pressure, dual-fuel engines. In land-based power generation activities Wärtsilä already has an installed base of around 2GW of engines operating at a methane slip of around 1g/kWh. Based on this experience and the technologies above, Wärtsilä is confident that it will have marine engines operating at this level by 2023, as well as having retrofittable technologies available to enable similar performance in older engines. Compared to diesel engines, a methane slip of 1g/kWh would cut greenhouse gas emissions on a tank-to-wake basis by 23% over a 100-year timeframe and 14% over 20 years.

Other evolving trends will also reduce methane and GHG emissions from gas engines further. The wider uptake of smart marine technology will also optimise engine performance and control, minimising emissions. Hybridisation will play an increasing role in many propulsion configurations. Using energy storage alongside engines will allow engines to be run more consistently at optimal, higher loads with the lowest possible greenhouse gas emissions.

There is also clear evidence that emissions abatement measures in the production and supply of LNG – which currently emit much more methane than engines – will continue to become more stringent. Wärtsilä is therefore convinced that dual-fuel engines will soon outperform MGO on a well-to-wake basis – even on the more onerous 20-year measure of GHG emissions.

Technology choices

The nature of different engine processes and the impact that size has on combustion means that two-stroke and high-pressure gas engines will continue to offer lower methane slip. However, there are several applications in which two-stroke engines are not suitable – smaller vessels or those with large fluctuations in power demand, for example – and many reasons why ship owners would value low-pressure technology.

Cost is the biggest factor. Low-pressure dual-fuel engines do not require the expensive high-pressure fuel gas supply systems that must accompany gas engines deploying the Diesel combustion cycle. They meet IMO’s Tier III NOx emission limits without after-treatment, saving on the installation of selective catalytic reduction units. The lower local pollution of low-pressure engine also means that operators do not have to pay for the regular replenishment of urea that exhaust aftertreatment systems require.

The issue of methane emissions is rightly at the centre of discussions over LNG-fuelled engines. Well-formed regulation will be critical in ensuring that the most effective environmental technologies are adopted. When it comes to climate change, this means that regulations on how to reach IMO’s 2050 ambition – as well as the existing Energy Efficiency Design Index – need to reflect the impact of methane as well as CO2.

Given methane’s high global warming potential, it is important that all stakeholders, including engine makers and regulators, should continue to work to minimise slippage and properly account for methane emissions. But the issue should not detract from the fact LNG can play – indeed already is playing – a significant role in shipping’s decarbonisation.

 


[i] Thinkstep (2019), Life Cycle GHG Emission Study on the Use of LNG as Marine Fuel
[ii] International Council for Clean Transport (2020), The climate implications of using LNG as a marine fuel

 

Wärtsilä in brief:
Wärtsilä is a global leader in smart technologies and complete lifecycle solutions for the marine and energy markets. By emphasising sustainable innovation, total efficiency and data analytics, Wärtsilä maximises the environmental and economic performance of the vessels and power plants of its customers. In 2019, Wärtsilä’s net sales totalled EUR 5.2 billion with approximately 19,000 employees. The company has operations in over 200 locations in more than 80 countries around the world. Wärtsilä is listed on Nasdaq Helsinki.
www.wartsila.com

Recent Blogs

SGMF Member Press Release

ABS & Probunkers Sign JDP for Fleet...

28/06/2024
SGMF Member Press Release

JAX LNG bunkers CMA CGM SYMI during SIMO...

24/05/2024

SGMF & Industry in Numbers

140

No. of members

722

LNG-fuelled ships in operation

114

Ports supplying LNG fuel

65

LNG BVs in operation

23

LNG BVs on order

4

Methanol BVs in operation

11

Methanol BVs on order

22

ISBN Publications available

27

Free resources available

3

LCAs

SGMF Members

Trusted by over
140 members

small-1
small-2New-01_FORT_TM_Logo_Master-RGB
small-006._logo_Yang_Ming_[SGMF]_1
small-1280px-MISC_logo_(Full_color)-01
small-1716_5fd1db43a4fa7
small-abs-logo-black
small-Anglo_American_Logo_RGB_4C
small-AP_Moller_Maersk_Logo_Colour1
small-ARTA_New_Logo
small-AV_logo_default_png_600x600
small-avenir_logo_high_res
small-bh_lg_hrz_rgb_pos_(002)
small-bhp_orn_rgb_pos_resized
small-BlackSea_Training_-_600x6002
small-BowWave
small-bp2
small-Brittany_Ferries_Logo
small-BSM_Logo_for_web_Colour_RGB
small-Bureau_Veritas
small-Capital_gas_logo
small-Capture
small-Carnival1
small-CCS_Logo2
small-Chart_new_logo
small-Chevron_logo_google
small-ClassNK_logo1
small-C-LNG
small-CM_Logo_Tagline_PMS_Red_(3)
small-CPA_R_CMYK
small-CryoSafe_Services_Logo_Final_Edit_Justified_Hi_Res_resized1
small-DNV_AS_new_logo
small-download_logo_HLAG
small-Eagle_LNG
small-enn
small-EPS_logo
small-equinor-logo-rgb-16-9_google
small-Fortis_Logo_small
small-FueLNG_logo
small-Gasum_Logo
small-Gate_Terminal_Logo
small-Gibraltar_Port_Authority_Logo23
small-Gigamare_logo_from_google
small-GTT-LOGO-CMJN_resized
small-GTT-TRAINING-LOGO-CMJN-V2
small-Hanwha_Ocean
small-Heatmaster-logo
small-HGIM-_Harvey_Gulf_Logo1
small-hkltl-logo
small-HKSTLogo2_(002)
small-home_page_landing-logo
small-inpex_logo_google
small-InterSea_lighthouse_blue_stacked_-_google_resized
small-Itochu_Picture1
small-James_Fisher_logo
small-JAX_LNG_Logo_(Google_search)
small-JMB_Logo
small-Kawasaki_Kisen_Kaisha_Logo_(Web_search)
small-Kawaski
small-KLCSM_CI
small-Knutsen_OAS_Shipping_logo1
small-LinkedIn_Gutteling_Logo1
small-Liquid_Gas_Equipment_Logo
small-LOGO(KR)1
small-LOGO
small-Logo_(Google)
small-Logo_(Google)1
small-logo_(website)
small-Logo_21
small-LOGO_GAS_AND_HEAT_HD_-_new_resized
small-logo_google
small-logo_msccargo_rgb_bk_2019
small-logo2
small-Logo11
small-LR_Logo
small-Maran_logo_from_google
small-Marine_Services_Logo
small-McA_LNG_Services
small-mhimsb-logo
small-MOL_Logo1
small-Moran_Towing_LogoColorXLarge1
small-mpa
small-NAKILAT-standard-logo-short-colored2
small-National_Grid_logo_blue
small-new_logo_Elengy
small-novatek_(002)
small-NYK_Logo2
small-OI_Logo
small-Pacemarinelogo
small-Peninsula_primary_logo_resized_-_NEW
small-Petronas_Logo_(Google_search)
small-PH_MArine_logo
small-Picture1
small-PMV_logo
small-POA_MASTER_LOGO_POS_RGB
small-Ponant_Logo
small-Port_Of_Rotterdam_Logo2
small-Poten_Partners_new_logo
small-PugetLNG_logo_RGB-1
small-Q-LNG-Logo1
small-RCCL_(Google)
small-RelyOn_Nutec_Logo
small-RGB-V.Group-brand-mark_
small-RHDHV_logo_HR
small-RINA_Logo
small-RioTinto_logo_from_google
small-Sailplan_Logo
small-Seaboard-Marine-Logo-1
small-Seagic_compressed
small-Seaspan_Ship_Management_Ltd._logo_google_
small-Seaspan1
small-Shell_nov2012_PECTEN_WEB_(2)2
small-Sirius_Shipping_Logo_2
small-SMIT_Salvage_Logo_JPEG_(3)
small-smitl
small-SMT_logo
small-STS_marine_solutions_new_logo_-_google
small-synergy_marine_group_logo_-_google
small-Technip_Energies_logo_(new)_reduced_size
small-terntank_landscape
small-TGE_Logo_quadratisch_rgb_extern
small-Titan_Clean_fuels_Logo_RGB_(002)
small-TotalEnergies_Logo_RGB_resized
small-TOTE_Services_Tagline-4C_(3)1
small-trelleborg
small-U-Ming_Logo-2
small-United_Bunkers_Logo
small-Utkilen_wide_google
small-VBunkers_new_logo
small-victrol_no_resized
small-VMT_Logo_jpg
small-Wartsila_Logo_1500_x_1050
small-waves-group-logo
small-WinGD_Blue1
small-WMT_Marine_Logo
small-WSM_Logo_(Blue)
small-YARA_rgb
wpChatIcon
wpChatIcon